
TagMatrix – a data visualization for
TraceTrack. Improvements on the

Lama framework

GIRARD Thomas

June 2009

Abstract

Recommendation systems are an important part of a lot of web applications today. Web
retailers need them to increase sales. They're used in most media-related application, be
it movie rental, music stores, news aggregators. What makes a good recommendation
system ?

In the particular field of music recommendation, what data is available and how can we
use it properly ? What's the importance of implicit user feedback versus explicit user
feedback ? How do users interact with recommendation systems, how do they
understand them, and how do the systems understand the users. These are all important
questions as web applications get richer, more complex and try to use more and more
data to give users what they need.

When data gets more complicated and harder to understand, the need for good data
visualizations appears. Data visualizations can be used to understand recommendation
systems, both from a developer and a user point of view. By understanding the
visualization, we may understand the data better and use it more wisely.

For this project, we extended TraceTrack, a music recommendation system and Lama,
the framework it's built on. We added a strong data visualization based on the user
feedback on this system. We also tried to understand how the data that's used both for
the recommendation and the visualization works.

This semester project was done at the Human Computer Interaction Group from EPFL
under supervision of Dr. Pearl Pu and Nicolas Jones.

3

Contents
Abstract..2
Introduction..4

What is Lama ?...4
What is TraceTrack ?..4
Goals...4

Modifications on Lama...5
Environment modifications...5

New settings location...5
New global functions...6
Authentication callback change...6

Saving Tracks..6
The BetterTrack class...7

A visualization: TagMatrix..8
Music visualizations..8
What data do we have ?..8
Other visualizations..9

Lastgraph..9
Last.fm Spiral...10

Why add a visualization to TraceTrack...11
Layout...11

Interactivity..14
Integration with TraceTrack..15

Integrating the player: modifying the interface..15
Development of the project...16

Difficulties and improvements..16
No debugging means..16
No database documentation...16
Redundancy in the new features..16
Bug Fixes...17
Improvement in TagMatrix options..17
Improving the player for the TagMatrix...17

4

Introduction
This section introduces the framework on which we worked. It also provides a global
overview of the basis on which our system is based as well as our motivations and goals
in this project.

What is Lama ?
Lama (short for Last.fm Musical Amplifier) is a PHP-based web framework for quickly
building applications using the last.fm radio service. Its design makes it easy to create
new music recommendation systems. Lama is being developed at the HCIG1 at EPFL.

This diagram shows how Lama is designed. The main thing to consider is that it uses a
thin-client architecture. The frontend, or client-side, only has to execute some javascript
and plays music through a flash player. All requests ar handled using AJAX and
processed in the backend (server-side) using PHP.

Notice where the darker parts of the diagram are. Those parts are the ones that any
application based on the framework will have to implement. This shows that the
framework (white parts) handles most of the tedious work and that an application
developer can mostly focus on interface design and recommendation logic.

More information on Lama including full documentation and source code is available
online2.

1 Website of the Human Computer Interaction Group: http://hci.epfl.ch
2 Lama website: http://whizz.ch/

5

What is TraceTrack ?
TraceTrack is a web application built using Lama. It uses a recommendation system
based on different alternatives and produces a time-line (the so-called tracetrack) that
represents the way the user advances through different musical recommendations.
Tracetrack is accessible through the Lama website.

Goals
Our goal was to create a new interface and/or data visualization based on Lama. Last.fm
provides a lot of data to its user, both regarding music and their listening habits.
TraceTrack adds a new layer of data that last.fm doesn't provide. Using those two data
sources offered us many possibilities in order to create an innovative visualization

A secondary goal was to improve and extend Lama and TraceTrack. Some bug-fixes
were made, some new functionality was added and modifications were made so that the
new visualization was well integrated with the old TraceTrack player.

Modifications on Lama
The Lama framework was built from the start with genericity in mind. One of the goals
at conception was that the framework could work with another music provider than
last.fm. This is done using many layers of abstraction in the application3. One of the
downsides of this is that the framework is sometimes a bit convoluted and complex. For
example, the simple processing of a user-action from the UI passes through a dozen of
classes and layers, making it quite hard to understand what's going on.

My objective was not to change the framework completely and in particular I didn't
want to alter its core architecture. However some simple things could be done to
improve the framework and make it easier to use.

Some bug fixes were also made. And we had to write additional documentation since
the original one was lacking on some points (mainly the database architecture).

A major improvement was also made so that the framework is now capable of storing
meta-data on the track the users have previously listened to. This was a required feature
in order to implement our data visualization later on.

Environment modifications
One of the problems we encountered at the start of the project was that all applications
used a different database, a different last.fm account, different callback urls and so on.
Setting up new instances of the tracetrack application took us a very long time because
nothing worked correctly because of this.

3 The full documentation for the framework is available on request, consult the Lama website for more
information.

6

These are small changes that affect the way some calls are made in the application, they
consist mostly in a relocation of some of the configuration variables, and the addition of
functions for some common tasks. These changes didn't add much functionality but will
probably make the framework easier to use and extend in the future. They also solve
most of the difficulties that we encountered while installing copies of the application.

One of the longer-term goal is to change parts of the implementation of the framework
in a way that would make it work so that a single instance of Lama could host many
different applications. These changes are a first step towards this goal.

New settings location
The static class Settings was added. It simply contains application-wide settings like
database authentication information, cookie directory and so on. It replaces the old way
the settings were accessed (through the database, or in global arrays) for more security
and consistency.

The Setting class is also used for initializing things in the application that need to be
done at each page call, for example setting some environment variables or the page-
encoding. Such actions were previously done on a page-by-page basis and creating new
pages or modifying old ones was an error-prone process due to this.

New global functions
Some global functions were added to centralize and encapsulate tasks that occurred
often in the code. For example, before this was modified, the connection to the database
was made the same way in about 10 different files. It's now done via a call to the
connectDatabase() function.

Other functions that were implemented are redirect() that replaces the old header() calls.
A sqlQuery() that encapsulates mysql_query() (although most of the database calls are
made using specific classes in the database packages).

A debug() mechanism was added that logs messages to a text file. Such mechanism was
lacking and is really useful given the fact that the backend of the framework may hardly
display errors to the frontend.

Authentication callback change
A site-wide script was added to the /utilities folder, it's called callback.php. Its function
is to receive all last.fm authentication callbacks from all applications and dispatch them
correctly to the proper folder. In the future this file could also be used to maintain a
shared user database for all Lama applications.

The old way of doing this was that every application had its own callback url. This url is
still used but this new script adds a centralized point for all applications that may be
usedful later.

The use of the script is optional (the old way of doing the callback still works). An
application may use the script by specifying its url in the lama API configuration panel.

7

In order to identify the application from which the call is being made, you may either
specify an application name (it's then necessary to modify the script so that the name is
recognized) or specify the full path to the callback file in the Lama framework. For
example our modified version of TraceTrack specifies the following callback url:

http://whizz.ch/utiliites/callback.php?name=tracetrack2&
(note the final & that is necessary because of the way last.fm sends its token.

Saving Tracks
This is the most important modification to the framework and one that was essential to
the later parts of our work. Until now, the application didn't have any mechanism to
save what the user did in previous sessions. Each time a user connected to the
application, it was as if he had never used it before.

While this was not really problematic because of the way tracetrack worked (it didn't
provide information that's really meaningful from one session to another other), it was
essential to implement such a mechanism for the creation of a complex visualization

This was done by storing tracks in the database. There are many ways to do this and
here are the options that we considered.

One possible option was to store only minimal information on the tracks, and to recover
the full information if needed in the last.fm database. This implementation has some
advantages: it is easy to implement, doesn't consume much space in the database.
However it would probably have been slow to use, because we'd have to make many
last.fm API calls each time we wanted to access information on a track.

The second possibility was to build a full database with complete meta-data on each
track (tags, artist name, duration and so on). This is harder to implement and has one
major downside: if at any time we become interested in a new kind of information on
the tracks, the database would've to be modified with the new information. Worse: we'd
have to build a script each time so that older tracks also get updated with new meta-
data.

In the end a solution that's in-between those two was chosen. We actually store in the
database (in the tracks table) a small subset of meta-data, the kind of meta-data we'd be
interested in making SQL-queries on. We also created a new PHP class, named
BetterTrack (because the class Track already exists in Lama, more on that below). The
standard meta-data is stored alongside the serialized BetterTrack object so that we may
retrieve it from the database and have full metadata access later on.

Additionally, it was important for us to store the tags associated with each track in the
database directly. Given the nature of the tags, it was necessary to insert them in a new
table in the database. This is the tracktags table. Each record in this table associates a
tag and its number of uses to a previously stored track. Note that the implementation of
tags in this way is not memory-efficient and a solution would be to eliminate
redundancy in tag names by creating a uniqueTag table so that tags that are often used
wouldn't have their name stored each time. This was not implemented to simplify the
use of the database since memory usage is yet far from critical.

8

The BetterTrack class
The class was conceived to be easy to use, while at the same time providing access to all
the meta-data we may need, be it from last.fm or from what we already stored. All data
is accessed from an associative array and data is easy to add and update, be it from a
local source or from last.fm.

A BetterTrack is built from a track title and artist, it fetches all known data from last.fm
at creation time (making a "track.getInfo" API call). The most commonly used meta-
data, is automatically stored in an associative array. Then it's possible to read any
additional data we may want in the XML that last.fm provided us.

As previously mentioned, Lama already uses a class named Track. The Track class is a
really basic container for track meta-data, limited to artist name, title, album name and a
few other fields. It could be interesting to replace all uses of Track by corresponding
calls to a BetterTrack. The BetterTrack class may need to be changed a little bit (to
conform to the interface of the old Track). But this would make later modification and
use of track meta-data easier for possible improvements of the framework in the future.

A visualization: TagMatrix
Music visualizations
There seems to be an increase in the number of people that use recommendation
systems to find and listen to new music that they like. Maybe people are trying to move
away from more passive means to discover music (like radio or TV) and become
attracted to more active ways to find new music. Last.fm is a web-service that allows
people to register what music they're listening to, and provides recommendations of new
bands that users may like based on their current taste. The system also provides
statistics to users from their listening habits. However this functionality is quite limited
and no advanced visualization of the data is provided. Last.fm also offers an API that,
among other things, allows developers to create visualizations from user data.

Last.fm and visualization services that rely on its data seem to answer to two main
different questions: "What should I listen to ?" and also, "How do I listen to music ?".
Tracetrack kind of answers the former, but gives little insight on the latter. A
visualization is what is needed to answer this second question and that's what we were
interested in providing.

Another aspect of the problem is that, while most recommendation systems and
visualizations try to give information on the user about themselves, few are giving
feedback to users as to how they are perceived by the system. This is an important point,
because if users understand how the system work, what the system sees from them, and
how their behavior affects it, then they may understand better what the system tells
them and why. They may even adapt to the system in order to beneficiate more from it,
and it could also be a factor that gives users more trust and appreciation to the system.

9

Next we'll reflect on what data TraceTrack, Lama and last.fm provide us that may lead
to an interesting visualization We'll also consider a few examples of other music
visualizations and what's interesting with them.

What data do we have ?
Our basic goal was to provide a visualization that relied on TraceTrack use and not on
last.fm statistics directly. Basically TraceTrack gives us one simple thing: a list of songs
the user listens to, and for each song, something that (possibly) links the two song
(maybe a common tag, an artist link, a song-link, or sometimes nothing).

From there we can access any meta-data on any of those songs from last.fm and try to
find patterns that may give an insight to how the system and the user behave.

We also have less explicit information that we can get from implicit user action (this
was one of the key-point in the conception of lama and TraceTrack: to use implicit user
feedback). For example the fact that a user skips a track quickly may be an indicator of
something that we could work on. Another thing we can exploit is temporal data, that is:
how does the tracks a user listens to change over time or between two different sessions.

As was just mentioned, what links two tracks is usually a simple bit of meta-data, either
an artist, a "similar song" link or a tag. In all three cases we can suppose that there's
some similarity in tags, even when the link is not explicitly a tag link. Artists usually
perform music that stays in the same or similar genres over different tracks and albums.
Songs that are marked as similar are often in the same genres too.

This led us to decide that working with tags was probably the most interesting thing we
could do as TraceTrack works with this data implicitly at different levels.

Tags are not always easy to manipulate. From one song to another, the number of tags
may vary a lot (from zero to hundreds of tags) and for any tag the number of people that
applied it varies greatly too (from a few people to millions). Tags are user-driven data,
which means that they're not always reliable. Tags may be redundant or uninteresting.
For all these reasons it's not always easy to work with them.

It's also worth thinking about what tags means to users and how they are (or aren't)
useful for music recommendations. Some tags are simply synonyms for genres or trends
(e.g: rock, pop, 90s) and can obviously be used for recommending similar music. Some
describe music well based on more complex appreciations (e.g: happy, party, erotic)
which describe very well what users think and may want, but is hardly translatable in
musical terms. Some tags are nearly useless (examples include "vvvvv" or "in prison").

Before seeing how we used tags in our system, let's see some other visualizations that
are based on last.fm. Some use tags, some don't, we tried to take a small selection of
visualizations that share some similarities with what we've done.

10

Other visualizations

Lastgraph4

Lastgraph is a very attractive visualization that produces a time-line showing what
bands the user listened to over time and in which proportions. Additionally it uses colors
and position in the graph to try and differentiate what artists a user listens to often or for
long periods of time, and those that the user only discovered recently.

The general outline of the graph shows the total number of tracks the user listened to
(week by week) and each artist has it's delimited part in the general shape that's created.
Frequent and/or ancient artists are closer to the center, while newer ones are in the
borders. The visualization uses a complex algorithm to produce curves as smooth as
possible so that shapes representing a single artist have the smallest possible distortion.

This visualization gives lots of information on the volume of music one listens to, on
the importance of some artists, the duration during which the user may have peaks of
interests on some artists and so on. It's visually rich and complex while remaining
simple to read.

One of the downsides is that it's creation is very complex: lastgraph uses an
asynchronous rendering system, which may take several minutes to render a graph. It
has little configuration options and offers no interactivity.

4 Lastgraph is available here: http://lastgraph3.aeracode.org/

11

Last.fm Spiral5

Last.fm Spiral shares some similarities with Lastgraph. It's also a time-line (time-spiral
actually) that shows the number of tracks the user has listened to over time, but it
separates curves for different artists instead of stacking them like Lastgraph does. This
gives a visualization that's a bit harder to read, but makes pattern emerge that Lastgraph
doesn't show.

The application makes it possible to show
only one or a subset of artists at a time for
better readability.

For example when tried on a test account,
the Spiral allowed us to see how that user
usually had short periods (from five to
fifteen days) during which he tends to
listen to a single artist a lot. These peaks
of interest rarely overlap and there seems
to be little repeat of artists from one peak
to another. Additionally it becomes quite
easy to see what artist one listens to
regularly but without specific pikes of
interest.

The choice of making the time-line in a spiral form is probably what makes this
visualization stand out from others, but it may not be so good of a choice because the
center of the spiral becomes harder to read. In particular, the closer to the center the line
gets, the smaller the amplitude of the curves become. Consequently it becomes difficult
to compare the intensity of different peaks that occurred at distant times.

Why add a visualization to TraceTrack
As previously seen, TraceTrack, as it was before this project answered to a user's need
to find new music. The trace itself gives some information to the user, but it's quite hard
to read (the user has to understand the color-codes, the symbol letters) and doesn't give a
long-term insight on how the user or the system works.

What was needed was a visualization that interacted with the player, but was
meaningful in the long term and more expressive. We already mentioned why we
considered the tags as interesting data to manipulate, the next step was to take an
approach that used tags on all tracks listened over time to produce its results.

5 Last.fm Spiral is available here: http://www.diametunim.com/muse/

12

Layout
The TagMatrix is not very complex in structure but allows us to show users different
things because it's easy to alter the contents of the matrix while the layout stays the
same.

Basically it's a simple table with, on top, album covers that show the last tracks a user
has listened. Then, on the leftmost column are tags that correspond to those tracks. In
the simplest disposition, the tags are ordered by alphabetical order. To the bottom are
separations that indicate when tracks were listened and allows the user to distinguish
between different listening sessions.

In the next example, the tags are ordered in alphabetical order and there's only one
session. The user reads the matrix and sees that he mostly listened to alternative, indie
and rock music. However this is not really expressive and a sorting algorithm was
implemented so that tags make a more meaningful cluster, this can be seen in the second
image.

Example 1: tags ordered by alphabetical order

13

Example 2: tags ordered using a clustering algorithm

With this second example, the user can see what genres the music he listened to fits in.
We also notice that rock, alternative and emo can be considered like similar genres. At
the end of the track the user switched radio completely and started to listen to (amazing)
punk rock.

This previous example is a bit too homogeneous to see the best the visualization can
provide. We provide a third example that shows how the algorithm may produce
different separated clusters. Here we see that the user started listening to electronic
music with some indie and rock influencesm then switched completely to jazz and funk.
Note that the appearance of this example differs because it's a screenshot from an old
version of the application. The algorithms are the same.

14

Example 3: clustering algorithm produces different clusters

We also observed that, with this algorithm, similar tags have a tendency to get
automatically grouped together. This can be seen here with the funk/funky tags,
electro/electronic/electronica is another good example.

This algorithm works by creating a tag-matrix in which each tag gets assigned a
similarity value, based on the number of songs this exact pair of tags are used at the
same time. The algorithm then selects the tag with the higher similarity index, places it
at the center. It then takes the tag most similar to the first one and places it to one side,
and continues in decreasing order of similarity until the matrix is filled.

The coloration (from dark to light blue) indicates the popularity of the tag for this
particular song. We took the percentage of use of this tag over all tags used, and applied
a logarithmic function to try to normalize it to a 0-255 color range.

15

Interactivity
The next step was to give the user a possibility to alter the way the information was
shown in order to have a better understanding of what was shown, and because it made
the application more attractive overall.

One may choose the way the tags are sorted, or the way the squares are colored. More
options could be made available (choice of the timespan, more sorting algorithms,
number of tags to consider, filtering of some tags based on criteria) but we lacked time.

The matrix is a source of information of two kinds. First it gives the user a general
feedback on what he listened to and how. The matrix makes pattern emerge from users
behavior. The grouping algorithm for tags will often create different clusters of tags for
different listening sessions, the user will easily see how his actions (choosing a tag and
sticking to it for example) reflect on the matrix.

For some users the patterns are clear, some have a long line in the center, very dense and
with little variation. Some have a smaller cluster that indicate their general interest, but
that's surrounded by a lot of "tag-noise", which shows that they tend to listen to very
various things at the same time. Some users have clusters that vary a lot from session to
session, some don't. It's at the same time easy and amusing to view our own music
patterns.

On the other side, the user may use the matrix to comprehend how the system works
and tries to understands them. Since tracetrack relies on implicit user interaction to
collect data and make recommendations, users may not actually know how their actions
will affect the system. By looking at the tag matrix they may realize how, for example,
choosing a particular tag will reflect on what information the system will gather. A user
that uses its music library a lot will probably have an noisier pattern, and may then
understand that this kind of pattern doesn't give a coherent information to the system.

Still, it should be noted that for now, the matrix has only been tested by a few people so
it's still not easy for us to know how well our ideas and suppositions will concretize.
The way the users perceive and use the matrix may also evolve as more functionality is
added to it.

16

Integration with TraceTrack

With the TagMatrix built and functional, more things remained to do. As it was, the
TagMatrix was completely independent (visually) from the TraceTrack player. It seemed
a good idea to modify TraceTrack so that the user could easily use it with the TagMatrix
seamlessly.

Another thing that we decided to work on was to give the user a clearer feedback of
what his interaction with the player produced as result on the TagMatrix.

In order to make the experience coherent from one session to another, we also changed
the policy that the application used to choose the first song the user would listen to at
login. The previous policy was to choose a random song with the acoustic tag (arbitrary
choice), instead the application now chooses a song that's similar to the song the user
listened to the last time he was connected.

Integrating the player: modifying the interface
Given that the TraceTrack already had a visually strong design, some work was made to
give the tagmatrix a similar look. This was achieved by trying to use similar colors and
reusing the box design of the player.

This was not enough, because the user still had to quit the player in order to view the
matrix. To solve this, the original layout of TraceTrack was slightly modified. The
header is now used as a menu the user may use to show different parts of the
application. A simple click on the TagMatrix icon will pop-up the matrix over the
player, while the music still plays in the background. Another click and the matrix is
gone with the player accessible again.

Given the increasing complexity of the application, some time was also spent making it
more user-friendly. A small explanation was added to the front page so that the user
know what the application is about, and how the inscription process works.

Inside the application a help box was added that briefly explains how the player works,
what is the TagMatrix and the TraceTrack.

17

Screenshot of the TraceTrack interface as it is now.

18

Development of the project
Here are a few notes on different problems we met during the project and on some
challenges that weren't addressed in the previous pages. We also take a look at some of
the possible improvements for the continuation of the development of Lama,
TraceTrack and the TagMatrix.

Difficulties and improvements

No debugging means
Lama doesn't provide any good mechanism for debugging. When an error happens in
the backend, most of the time the user gets absolutely no feedback on what's going on.
No logging is done for errors. The only way to try to understand what happens is to
inspect the AJAX communication messages. This gets impossible if for any reason the
frontend cannot parse the messages from the backend.

This is really problematic and we lost about two weeks of development time because of
a stupid error that gave no message and couldn't be debugged.

Implementing more informative error messages, debugging mechanisms and even
reliability mechanisms should be a priority for the next cycle of development.

No database documentation
The database wasn't documented at all when we started the project. This was quite
unfortunate especially given the fact that some table were in the database but never
used, and that some other tables followed a non standard and unusual scheme.

This is now dealt with because the documentation was written during the project.

However it should be noted that database interaction is currently done in a weird way
through custom made classes and that it could be interesting to rewrite the whole
database driver (for example using PDO).

Redundancy in the new features
Because the code for Lama and Tracetrack is well documented in its structure, but
nearly not commented at all, it is quite hard do modify. For this reason, some of the new
features implemented during the project do not use some parts of the framework and re-
implement some mechanisms that could have been reused instead.

For example, the AJAX communication used to display the TagMatrix or the Help
window in TraceTrack doesn't rely on the Javascript code that was initially there. It
could be interesting instead to use the old code and show the matrix by creating a new
command in the Lama communication protocol and by implementing the proper PHP
code in the main EventHandler.

19

Bug Fixes
There are still some undocumented bugs in the framework. Most of those bugs result
from cases where an object was expected by some part of the application (either coming
from an API call, or a database read, or a client-side argument) and a null value is
returned instead.

In most cases there's nothing done to check that the object is null and exceptions are
thrown. Since there's no error mechanisms, this often results in an unresponsive
interface for the user (no alternatives showing, or no music playing).

Improvement in TagMatrix options
A lot of new things can be done with the TagMatrix. One of the facets of it we haven't
had time to develop is the time aspect. By merging listening sessions, or tracks, or larger
timespans together, it would be possible to create a matrix that represents a user's
listening habits over a longer period. We could imagine things such as a matrix that give
tag informations for different hours of the day. There's a lot to do with those ideas.

New sorting algorithms can be developed too. We talked a lot about a clustering
algorithm that would generate two big but opposed tag groups (this would be kind of the
opposite of the current centralized view).

Another thing to work on is the filtering of tags. For reasons exposed earlier in this
document, tags are a very heterogeneous data source. If we could automatically find
ways to organize it better, by removing unwanted tags, and merging tags that are
actually synonyms, we could then use them better.

On a simpler UI-related note, it would be good if the album covers on top of the
tracetrack displayed informations on the track when hovered with the mouse.

There could also be a way to integrate transition types (that is, recommendation,
neighbors or artist similarity, as given by the player) into the matrix.

Improving the player for the TagMatrix
As is, the player allows users to use 5 different radio alternatives. Three of them are
based on users profiles and only 2 are based on the tracks themselves.

It would probably be more interesting to have a larger number of track-based
alternatives. We even thought about making the radio tag-based only. The user could
choose one or more tags at the time and the radio would suggest similar tags and artists.
This way, the progression in recommendation would make more sense from a meta-data
point of view and we could generate better visualizations

The trace itself should be improved. There's probably a lot of things that can be done to
make it clearer. For example we could display album covers on the trace (that would
also make a nice visual link between this and the tag matrix) so the users could keep
track of the transitions between two tracks without having to remember everything in
his head.

